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SAMPLING THE FERMI-DIRAC DENSITY

by

E. D. Cashwell and C. J. Everett

ABSTRACT

A method is given for sampling the nonrel-
ativistic Fermi-Dirac electron energy density for
all values of the “degeneracy parameter!’n on the
range - m < ~ < 50. The efficiency of the various
rejection techniques employed is never less than
30%, and
n values
extended
71%, and

drops below 50% only for a short range of
around rI= 2. The range can certainly be
beyond,q = 50, the efficiency there being
decreasing very slowly.

I. THE FERMI-DIRAC DENSITY

The nonrelativistic Fermi-Dirac density for the electron velocity (Ref. 1,

p. 333) is given by

P(VX,VY,VZ) dvx dvy dVz = — Q(E) dvx dvy dvz ,
fi:

Q(E] . ~,~p(:- .) + 1] :

(1)

(2)

where m = 9.1096 x 10-28 g is the electron mass, n is the number of electrons

per cm3, h = 6.6262 x 10-27 erg sec is Planck’s constant, E = k mv2 erg is the

electron energy, with V2
222

=V+v + v=, and El= kT erg is the “temperature,”
x Y

k = 1.3806 X 10-16 erg/°K being the Boltzmann constant. In E&. (2), rlis the

“degeneracy parameter,” depending on n and 13in such a way as to make

f r r ‘@xvyJ’zJ ‘Vx ‘v, ‘v. = ‘ -
.Cn -03 -w

(3)

1



If Q(v, (3,+)denotes the corresponding “spherical coordinate density,” then

Q(v, e,@) dvd~ d~ =+ @(E) (V2 sin El)dv de d$, and the speed density is,
nh

therefore, given by

8mm3
q(v) dv = ~@(E) v2dv,0<v <UJ .

nh

Since E = ~ mvz, we obtain for the energy density

8 fin xn3/2# ~(,1 dE, 0., . ~
f(E) dE = q(v) ~ dE =

nh’
.

Setting y = E/tl,the y density is seen to be

8fi~m
3/2 e3/2 .

$dy=
y+ dy

p(Y) dy = f(E)
nh3 eY-n + 1

~-1 yh dy= ()<y <’w.
,eY-n+l’

From the necessary relation

it follows that the n,13-dependentparameter n must be determined so that

It is easy to verify that I(n) and 11(q) are positive

for - m < rI< CO,while

2

(4)

(5)

(6)

(7)

(8)



.

d Thus I(TI)strictly increases from 1(-~) = O to I(m) = ~, and for every C > 0 in

Eq. (8), there is a unique ~ on (-~,~) such that I(?l)= C.

Values of I(?I)have been tabulated (Ref. 2,3) at intervals of 0.1 for

-4<qg200 Table I below gives an idea of the variation of I(?I)on this range.

TABLE I

THE FUNCTION I(n)

Outside of these limits the fol-

lowing approximations are recommended

(Ref. 3):

-4
-3
-2
-1
0
1
2
2.5
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

.016128

.043366

.114588

.290501

.678094
1.39638
2.50246
3.1966
3.97699
5.77073
7.83797
10.1443
12.6646
15.3805
18.2776
21.3445
24.5718
27.9518
31.4775
35.1430
38.9430
42.8730
46.9286
51.1061
55.4019
59.8128

fi -4
One may note that ~ e = .016232,

while ~ (20)
3/2

= 59.628, as compared

with the values 1(-4) and 1(20) in

TABLE I

II. PRELIMINARY DETERMINATION OF C
AND q

For a given density n and tem-

perature 0 = kT, one first computes

the value of

c=
h3

8@. m3/2”&

~ 1.835 x1O
-16 n

(11)
~“

I

I
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Guided by the above remarks we then determine the corresponding rIas fol-

lows:

(a) If C < .016128, rIis given by eq = + c,

(b) if .016128GC~ 59.8128, q is found from the tables cited (Ref. 2, 3),

(c) ifC > 59.8128, thenq = (3C/2)2’3.

For the known values of C > 0 and rIon (-co,~)one must now sample the den-

sity

~
p(y) SC-1 y ()<y<a’

eY-n + ~ ‘

for y > 0, and set the energy E = Oy. We to the curious

p(y) we are forced to use two different methods depending

III. THE CASE (-Ix’ < T_@ 5/2)

For a value of rl~ 5/2, we write

+ ‘Y dy

P(Y) dy= c‘1 r(3/2) en ● ‘r(~,21 ●

1 +leq-y

:A-l “ PI(Y) dy c h(y) ,

where pi(y) is the density

‘y/r(3/2), o < Y< ~ ,PI(Y) = Y% e

h(y) is the “acceptance factor”

and

and

4

n-Y) <l, o<yc@ ,() c h(y) = 1/(1 + e

the efficiency

A= 2 C/fieq

Following the

(12)

nature of the function

on the value of q.

of the corresponding rejection technique is

(13)

(14)

(15)

. (16)

usual method (Ref. 4, R 7), we sample PI(Y) for Y on (O~m)~

accept y with probability h(y).

,
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The density pi(y) is easily sampled (Ref. 4, C 32); a brief indication of

the routine follows:

Sampling y% e“/r(3/2) for y on (0,~).

1. Generate random numbers, rl, r2 on (0,1).

2. IsS~r2 +r~~l?
1

Yes (advance to (3)), No (return to (l)).

3.
log s

Setpi =-—=
s r?, i = 1,2.

1
4. Generate next random number r.

5. Sety=-logr+pi.

(Two samples of y are obtained, which may be used successively.)

The efficiency A in Eq. (16), based on the values ofC = I(rl)in TABLE I,

are listed for various values of rl~ 3 in TABLE II. Note that, for the recom-

n = 2 C/fi (rl< -4), the efficiency A appears to be 1,mended approximation e

although, of course, there may be some rejection.

In principle, the above method applies for all rl. We have drawn the line at

n = 5/2 simply because the method of the next part is relatively easy to apply

for rI> 5/2, as will appear. If enough trouble

imum h in part IV, the q dividing line could be

resulting increase in efficiency.

IV. THE CASE (~ > 5/2).

We first note that the function

TABLE II

EFFICIENCY A

T
l-l A

-4 .99
-3 .98
-2 .96
-1 .89
0 .77
1 .58
2 .38
2.5 .30

;3 .22

were taken in finding the min-

pushed to the left, with a

is decreasing for y > q, provided ~

exceeds 1. For, an easy computation

shows that the inequality p’(y) < 0

follows from the relation (2y - l)eY-n

> (2rl- 1) e“ > 1.

If we define

J
n

Al = P(Y) dy, A2 = 1 - Al, (17)

o



we may sample A~l p(y) dy on (O,v) with probability Al, and A~l p(y) dy on (?l,~)

with probability A2 (Ref. 4, C 3).

(a) The first of these is simple, for we may write

.

-1
P(Y) dy = A~l C-1((2L3) T-I3’2)(e-’l + 1)-1 ●

*dy .e-Q+l
‘1 ,% 32 ey-n + ~ “

(18)

Thus we easily sample the density Y%/((2/3)V3’2) for y = . 2/3 on (O,q), accept-

ing y with probability (e-~ + l)/(ey-’l+ 1) < 1, the efficiency of the technique

being

3/2
‘1

= 3 AIC(e-~ + 1)/2rI . (19)

This certainly exceeds ~. For,

f

n
Al = C-l y

+ dy > #(2/3) r13/2) = C-l ~3/2
eY-n + ~ 2 3

.

0

Thus 3 AIC > ~
3/2 and S1 > ~ (for any ~ > O).

Note that the value of A, is irrelevant for the rejection technique, except
L

insofar as it enters into the efficiency El. However,

probabilities in Eq. (17).

It is clear that.

‘1 = B/C ,

Hence the value of B as well as C is required for each

These values are listed for rl= 3, 4, .... 50 in TABLE

numerical integration using Simpson’s rule. It may be

following routine.

Al ~ required for the

TI~ 5/2 which arises.

III, and were obtained

helpful to include the

(20)

(21)

by

.
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Simpsonfs method for B =
f

q y% dy

eY-v + ~’
T-1=3,4, .... 50.

0

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

(b)

write

1/100 + cl.
ed+E

.

N = 100 r).

o +yo.

e-n + ~
o“

()+ .zO.

()+n.

Yn+l = Yn + d.

E = En E.n+1

zn+l = Y:+#(l + En+l).

n + 1 +n.

Isn<N? Yes (return to (9)), No (advance to (14)).

BV=$[ZO+ZN +4(Z1+Z3+ ... +zN_l) +2(Z2+Z4+ ... +ZN2)].

IsTl<50? Yes(rl+l+~, return to (4)), No (advance to (16)).

Print B3, B4, ...> ’50”
To sample the second density (and this is the whole difficulty) we

-1 ‘y dy .
P(Y) dy = Ajl C-l en r~ H . Yer

H-’
‘2 i s

n y+(l + en-y)

where

H = max l/[y%(l + e“l-y)]for ~ < y < ~ ,

J
m

rn = ye -n-Ydy=(q+l)e .

Hence, if we determine

h=min [y%(l + en-y)] for~ <y<m ,

(22)

(23)

(24)

(25)

7



the density (22) becomes

-1 -1
C (n+l)h-l”#.

h
‘2 1 .

n yq(l + en-y)
(26) ‘

We propose to sample ye-y/m for y on (rl,~),accepting y with probability

h/[y*(l + e~-y)] < 1 ,

the efficiency of the technique being now

‘2 =A2Ch/(q+l) .

Recalling that A2 = 1 - Al and Al = B/C, this becomes

‘2 =(c- BI W(n + 1) ,

(27)

(28)

(29)

where B is defined by Eq. (21), and tabulated in TABLE III.

Thus the minimum value h in Eq. (25] is required not only for evaluating

the efficiency C2, but also for the acceptance probability (27). We next turn

to the determination of h.

For the function

h(y) = y% (1

one may show that

h’(y) = [1 -

(30)+ en-y
),Y~n ,

h(q) = 2#, h(~) = ~1 with

(2y- 1) en-Y]/2y% . (31)

ThUS h’(q) < (),h’(~) = O, and the minimum of h(y) occurs at some yO > ~. We

therefore require the unique y. > rlfor which h’(y) = O, that is to say, for

which

fJ(Y)~ (2y - 1) e
n-Y _~ = o. (32)

8



Now g(~) = (z~ - 1) -1 > 0 since n > 1, and g(~) = -1. However, it can be

shown that g(y) is decreasing on (TI,CO)only if q > 3/2, and is concave up only

if v > 5/2. Hence, Newton’s method for the zero y. of g(y), with an initial

y = rI,is safe only ifrl > 5/2, and this has d-ictated-our requirement rl> 5/2 in

the present method. The values of h for n = 3, 4, .... 50 are listed in TABLE

III, together with the corresponding efficiencies E2.

The zero y. and associated minimum h of h(y) were computed by the following

routine.

Newton’s method for h = min [;+(l + en-y)], n =3, 4, . . . . 50.
(n,’=)

1. 3+~.

2. q+y.

- 1) en-y-1
3. y’=y+~zy

(2 y - 3) en-y “

4. Is y’ - y < .001? No (y’ + y, return

5. h = (Y’)+ (1 + en-y’).n
6. Is v < 50? Yes (q + 1 + q, return to

7. Print h3, h4, .... h50.

It only remains to indicate how the “tail

to (3)), Yes (advance to (5)).

(2)), No (advance to (7)).

end” of the r-density ye-y/m,

~ < y < ~, is to be sampled for y > rl. For this, we employ the ingenious method

of Carey and Drijard (Ref. 5), which in our case may be formulated by the fol-

lowing routine.
‘~, A = e-m(l + ~), B1. SetP=e = 1/(1 + n).

2. Generate random numbers PI, P2 on (0,1).

3. Is pl G B? yes (advance to (4)), No (advance to (5)).

4. Set rl = API, r2 = P2 (advance to (6)).

5. Set rl = pexp[(l + n) PI - 11, r2 = P2 p/rl (advance to (6)).

6. Set y = -log r1r2.

The justification of this is based on the remarks below.

(a) To sample the density ye“/I’(2) on its full range (0,~) (Ref. 4, C 22),

one generates random numbers r1,r2 and sets

Y’ -log r1r2,

where (r1,r2) may be thought of as a point uniformly distributed in the unit

square.

9
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n
—

3

4

!5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10

c B h

TABLE III

DATA FOR CASE q

‘2

3.97699

5.77073

7.83797

10.1443

12.6646

15.3805

18.2776

21.3445

24.5718

27.9518

31.4775

35.1430

38.4430

42.8730

46.9286

51.1061

55.4019

59.8128

64.1561

68.7928

73.5361

78.3837

83.3333

88.3830

2.56919

4.19987

6.11994

8.29047

10.”6854

13.2830

16.0682

19.0287

22.1544

25.4368

28.8685

32.4434

36.1558

40.0008

43.9739

48.0711

52.2887

56.6233

61.0719

65.6317

70.2998

75.0740

79.9518

84.9311

2.539

2.834

2.967

3.157

3.336

3.488

3.656

3.809

3.956

4.072

4.225

4.315

4.440

4.557

4.676

4.792

4.887

5.012

5.121

5.196

5.316

5.401

5.500

5.599

.89

.89

:85

.84

.83

.81

.81

.80

.80

.79

.79

.78

.77

.77

.77

.77

.76

.76

.72

.71

.72

.72

.72

.72

.646

.728

.781

.817

.844

.864

.879

.892

.902

.910

.917

.923

.928

.933

.937

.941

.944

.947

.952

.954

.956

.958

.959

.961

n
—

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

> 5/2

c B h

93.5307

98.7747

104.113

109.545

115.067

120.680

126.380

132.168

138.042

144.000

150.041

156.165

162.370

168.655

175.019.

181.461

187.980

194.575

201.246

207.991

214.811

221.703

228.667

235.702

90.0099

95.1863

100.458

105.825

111.283

116.833

122.471

128.198

134.012

139.911

145.894

151.960

158.108

164.337

170.646

177.033

183.498

190.040

196.658

203.352

210.119

216.960

223.874

230.860

5.691

5.786

5.851

5.941

6.027

6.115

6.212

6.274

6.356

6.438

6.519

6.598

6.678

6.757

6.836

6.910

6.988

7.049

7.124

7.195

7.269

7.342

7.415

7.483

‘2 ‘1——

.72 .962

.72 .964

.71 .965

.71 .966

.71 .367

.71 .968

.71 .969

.71 .970

.71 .971

.71 .972

.71 .972

.71 .973

.71 .974

.71 .974

.71 .975

.71 .976

.71 .976

.71 .977

.71 .977

.71 .978

.71 .978

.71 .979

.71 .979

.71 .979

,

\
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(b) But for the tail end density, one requires only such points for which

Y > ~, i.e., for which

< e-n ~ P .
‘lr2

One could, of course, throw points (r~,r2) uniformly in the unit square, and

reject those lying above the hyperbola r1r2 = P, but the efficiency would be

poor.

(c) The above (nonrejection)device is valid since the two transformations

-~(1 + ~), in Pin (4) and (5) both have Jacobian e de endent of pl,p2, and so

transform the two rectangular areas of the full pl,p2 unit square determined by

the line PI = B in a uniform way into the required two areas of the r1,r2 unit

square; the first a rectangle of base e-~ and height 1, of area e-n, and the

second lying directly below the hyperbola r1r2 = e-n, with base 1 - e-n, and
-narea ~ e .

v. VALUE OF I(rI)FOR ~ ~ O

For arbitrary n > 0, and A ~ e“l~ 1, one may write

-1 ‘-1 dy‘Y
f

‘-l(Ae-y) dy= ‘Y
ey-n + ~ =

o 0
1 + (Ae-y)

z 03

[

(-I)j+l Aj m ~jyln-l e-”= ‘y d(jy)
j=l .jn

(x
co

= “)Jj=l (-l)j+l~ ‘Xn-l e_x dx ~ F(A,n) I’(n) .

J o

For n = 3/2, this gives in our case

I(rI) $ ~(ev,3/2),=~(A,3/2) r(3/2) =

determining rlimplicitly in terms of I(n).

In particular, this shows that

11



Aim
I(0) ==

E

(_l)j+l K

.3/2 =
y (1 -~) c(3/2) = .678094,

j=l J

where c is the Riemann zeta-function (cf. TABLE I).

In fact, a method (Ref. 4, R 8) for sampling p(y) can be based on the above

relations when ri< 0, but the routine of Part III seems simpler and does not

restrict q to negative values.

VI. THE MARGINAL DENSITY OF Vx

It is remarkable that, by introducing polar coordinates r,f3for v ,V th6!
y z’

marginal density of,vx on [-~j~) tiaybe obtained in the explicit form (Ref. 1,

p. 334)

ccl

H
co

Pl(vx) = P(VX,VY,VZ) dv dvz
Y

For u = (m/2fI)%vx,we then have the u-density

2
d(u) = (2C)-1 log(l + eve-u ) ,

which seems a more well-behaved function than p(x), and would, of course, serve

our purpose. However, none of our attempts to sample d(u) have proved feasible.
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