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SAMPLING THE FERMI-DIRAC DENSITY

by

E. D. Cashwell and C. J. Everett

ABSTRACT

A method is given for sampling the nonrel-
ativistic Fermi-Dirac electron energy density for
all values of the 'degeneracy parameter" n on the
range - ® < n < 50. The efficiency of the various
rejection techniques employed is never less than
30%, and drops below 50% only for a short range of
n values around n = 2. The range can certainly be
extended beyond n = 50, the efficiency there being
71%, and decreasing very slowly.

I. THE FERMI-DIRAC DENSITY

The nonrelativistic Fermi-Dirac density for the electron velocity (Ref. 1,

p. 333) is given by

3
- 2m
P(vx,vy,vz) dvx dvy dvz = nh3 o (E) dvx dvy dvZ s (1)
E
®(E) = 1/[%xp(§ - n) + 1] s (2)
where m = 9.1096 x 10'28 g is the electron mass, n is the number of electrons
per cms, h = 6.6262 x 10_27 erg sec is Planck's constant, E = % mv2 erg is the

electron energy, with V2 = vi + vi + vi, and 6 = kT erg is the "temperature,"

k = 1.3806 x 1010

""degeneracy parameter,' depending on n and 6 in such a way as to make

i
erg/°K being the Boltzmann constant. In Eq. (2), n is the

OO

f f f P(vx,vy,vz) dvX dvy dvZ =1 . (3)
- 00 -00

-00



If Q(v, 9, ¢) denotes the corresponding '"spherical coordinate density,'" then
3

Q(v,8,6) dv a8 do = 22 o(E) (v? sin 68) dv d6 do, and the speed density is,
nh
therefore, given by
81rm3 2
q(v) dv = 3 O(E) vi dv, 0 < v <o | (4)
nh
Since E = % mvz, we obtain for the energy density
3/2 ,
£(E) dE=q(v)g—‘édE=Mlsl“— E? ®(E) dE, 0 < E < o . (5)
nh

Setting y = E/B, the y density is seen to be

3/2 ,3/2 %
dE 8 V2 0 d
p(y) dy = £(E) & dy = s R (6)
Y nh ISALLIES |
L
EC']‘_y__d_)_'.___,o<y<co, (7
N
From the necessary relation
oo
f p(y)dy = 1,
0
it follows that the n,0-dependent parameter n must be determined so that
o y’/z dy 13
I(n)Ef = e _=¢C . (8)
J  dMe1 s/zanl? 632

It is easy to verify that I(n) and I'(n) are positive

for - © < n < », while




w 1 -y
I(n) =f y_e fly <r(§/2) > 0asn> -
0 en+ey en

+ooasn+oo

n ks n
y2d L 3/2
I(n)>f y_ny >f yzdy=n/
0 e + 1 0 2 3

Thus I(n) strictly increases from I(-») = 0 to I(«) = «, and for every C > 0 in
Eq. (8), there is a unique n on (-®,») such that I(n) = C.
Values of I(n) have been tabulated (Ref. 2,3) at intervals of 0.1 for

-4 < n < 20. Table T below gives an idea of the variation of I(n) on this range.

TABLE I Outside of these limits the fol-
THE FUNCTION I(n) lowing approximations are recommended
(Ref. 3):
n I(m) s
~ _Tr n -
_4 .016128 IM x5 e, n<-4, (9)
-3 .043366
-2 .114588 IM) = %—ns/z, n>20 . (10)
-1 .290501
0 .678094
1 1.39638 One may note that VT e 4 = .016232,
2 2.50246 2 3/2 2
2.5 3.1966 while 3-(20) = 59.628, as compared
3 5.97699 with th lues I(-4) and I(20) in
4 5.77073 1 ¢ vald
5 7.83797 TABLE I
6 10.1443
7 12.6646
8 15.3805 II. PRELIMINARY DETERMINATION OF C
9 18.2776 AND n
10 21.3445 . .
11 24.5718 For a given density n and tem-
12 27.9518 perature © = kT, one first computes
13 31.4775
14 35.1430 the value of
15 38.9430
16 42,8730 3
17 46.9286 C = h . . n
18 51.1061 - 3/2 3/2
19 55.4019 § V2 mm ®
20 59.8128 ! . -16 n
I : & 1.835 x10 35 (11




Guided by the above remarks we then determine the corresponding n as fol-
lows:

(2) IfC < .016128, n is given by e = 72 C,

(b) if .016128 < C < 59.8128, n is found from the tables cited (Ref. 2, 3),

(¢) if C > 59.8128, then n = (3¢/2)2/3.

For the known values of C > 0 and n on (-®,») one must now sample the den-

sity

-1
py) =C " —L—,0<y<e (12)

for y > 0, and set the energy E = 68y. Due to the curious nature of the function

p(y) we are forced to use two different methods depending on the value of n.

III. THE CASE (- < n < 5/2)

For a value of n < 5/2, we write

_ B -y
clrary e L 4. 1

p(y) dy = T(3/2) . oY (13)
=At . p,(») dy - h(y)

where pl(y) is the density

p () = y2 e V/T(3/2), 0 <y < (14)
h(y) is the '"acceptance factor"

0<h(y) =1/(1+e"™)<1,0<y<> (15)
and the efficiency of the corresponding rejection technique is

A=2C/H/T e . (16)

Following the usual method (Ref. 4, R 7), we sample pl(y) for y on (0,®),
and accept y with probability h(y).



The density pl(y) is easily sampled (Ref. 4, C 32); a brief indication of
the routine follows:
L -
Sampling y° e Y/T(3/2) for y on (0,).

1. Generate random numbers, Ty, T, on 0,1).

2. Is S§= ri + rg < 1?7 Yes (advance to (3)), No (return to (1)).
. _logs 2 . _
3. Set “i = - S Ty, 1= 1,2.

4. Generate next random number r.

5. Sety=- logrr + pi.

(Two samples of y are obtained, which may be used successively.)

The efficiency A in Eq. (16), based on the values of C = I(n) in TABLE I,
are listed for various values of n < 3 in TABLE II. Note that, for the recom-
mended approximation el = 2 C/Vm (n < -4), the efficiency A appears to be 1,
although, of course, there may be some rejection.

In principle, the above method applies for all n. We have drawn the line at
n = 5/2 simply because the method of the next part is relatively easy to apply
for n > 5/2, as will appear. If enough trouble were taken in finding the min-
imum h in part IV, the n dividing line could be pushed to the left, with a

resulting increase in efficiency.

IV. THE CASE (n > 5/2).

We first note that the function

p(y) = ¢t Y

TABLE II is decreasing for y > n, provided n

. tati
EFFICIENCY A exceeds 1. For, an easy computation

shows that the inequality p'(y) < O

n A follows from the relation (2y - 1)e¥ ™"
-4 .99 >(2n - 1) e’ > 1.
-3 .98 .
s "96 If we define
-1 .89

0 .77

1 ->8 N dy, A, = 1 - A,, (17
2 .38 1 - p(}’) Y 2 = = 1° ( )
2.5 .30 0

3 .22




we may sample Ail p(y) dy on (0,n) with probability Al’ and Az1 p(y) dy on (n,x)
with probability A2 (Ref. 4, C 3).

(a) The first of these is simple, for we may write

A e dy = a7t Tt @ n

3 -n
y’dy e '+1
e/ n¥? e

3/2

yee M+t (18)

2/3 on {(0,n), accept-

1
Thus we easily sample the density y?ﬂc/s)'nz/z) fory=nr
ing y with probability (e-n + 1)/(ey_n + 1) < 1, the efficiency of the technique
being

e, = 3AC(e" + 1372032 . (19)

1

This certainly exceeds %. For,

/2) 3 C-l n3/2
3

b 3
1 y-n , 1 2

0 e
3/2
Thus 3 A,C > n 1> % (for any n > 0).

Note that the value of A1 is irrelevant for the rejection technique, except

and €

insofar as it enters into the efficiency €;- However, A1 is required for the
probabilities in Eq. (17).
It is clear that

A1 = B/C , (20)
n L
where B Ef L_-—d-y— . (21)
0 ey L |

Hence the value of B as well as C is required for each n 2 5/2 which arises.
These values are listed for n= 3, 4, ..., 50 in TABLE III, and were obtained by
numerical integration using Simpson's rule. It may be helpful to include the

following routine.




n ks
Simpson's method for B =J(. —XF—QX——, n=3,4, ..., 50.
0

eY—n + 1

1 1/100 -~ d.

2 ed -+ E.

3 3 +n.

4 N = 100 n.

5. O_; Yo

6 e - EO.

7 0~ ZO.

8 0 - n.

9 Yne1 T Y0t d,
10. En+1 = En E.

1
_ 2

11. Zn+1 = yn+1/(1 + En+1)'

12, n + 1> n.
13. Is n < N? Yes (return to (9)), No (advance to (14)).

d
14. Bn = 3-[20 + ZN + 4(Z1 + Z3 + ... 4 ZN—l) +2(Z2 + Z4 + ...+ ZN-Z)]'
15. Is n < 50? Yes (n+ 1+ n, return to (4)), No (advance to (16)).
16. Print BS’ B4, cens BSO‘
(b) To sample the second density (and this is the whole difficulty) we

write

- - _ -y -1
Nlpm dy = at et me X B (22)
n y2(1 + ") :
where
b n-y
H=max 1/[y*(1 + e 7)] forn<y <o , (23)
Fn =f ye Y dy = (n+ 1) e . 24)
n
Hence, if we determine
5 n-y
h =min [y?(1 + e /)] forn<y <o , (25)




the density (22) becomes

o i -y
stetmsnpnt. 222 h — . (26)
nooy'(l+e’’)

Ny

We propose to sample ye—y/I‘n for y on (n,»), accepting y with probability

!
3

n/iy?1 + e <1

’ (27)
the efficiency of the technique being now
€y = A2 Ch/(n+1) . (28)

Recalling that A2 =1 - A1 and A1 = B/C, this becomes

€, = (C-B) h/(n+1) , (29)

where B is defined by Eq. (21), and tabulated in TABLE III.
Thus the minimum value h in Eq. (25) is required not only for evaluating

the efficiency €,, but also for the acceptance probability (27). We next turn
to the determination of h.

For the function

hy) =y? 1+ ™), y2n (30)
one may show that h(n) = Zn%, h(®) = ©, with

b o) = 1 - 2y - 1) "yt (31)
Thus h'{(n) < 0, h'(®) = 0, and the minimum of h(y) occurs at some Yo >n. We

therefore require the unique Yo > N for which h'(y) = 0, that is to say, for
which

g(y) = (2y - 1) Y -1 = 0. (32)




-1. However, it can be

Now g(n) = (2n - 1) -1 > 0 since n > 1, and g(«)
shown that g(y) is decreasing on (n,®) only if n > 3/2, and is concave up only
if n > 5/2. Hence, Newton's method for the zero Yo of g(y), with an initial

y = 1, is safe only if n > 5/2, and this has dictated our requirement n > 5/2 in
the present method. The values of h for n = 3, 4, ..., 50 are listed in TABLE
III, together with the corresponding efficiencies €,-

The zero Yo and associated minimum h of h(y) were computed by the following

routine.
' s 3 n-y
Newton's method for h = min [y*(1 +e “)], n =3, 4, ..., 50.
(n,>)
1. 3 -»n.
2. n->y.
3. y' =y + 2y-1 e -1 .

2y -3 7Y
4. Is y' -y < .001? No (y' = vy, return to (3)), Yes (advance to (5)).
5. ho= 07 s .
6 Is n < 50? Yes (n + 1 > n, return to (2)), No (advance to (7)).
7. Print hS’ hy, oo, hSO'

It only remains to indicate how the '"tail end" of the I'-density ye_y/Fn,
n<y<®, is to be sampled for y > n. For this, we employ the ingenious method
of Carey and Drijard (Ref. 5), which in our case may be formulated by the fol-
lowing routine.

1. Set P=e, A=e (1 +n), B=1/(1 +n).

Generate random numbers Py> P, ON (0,1).

Is 0y < B? Yes (advance to (4)), No (advance to (5)).

Set Ty = Apl, r, =0, (advance to (6)).

Set T, = Pexp{(1 + n) Py - 11, T, = P, P/r1 (advance to (6)).

[« )N 7 2 NN~ N 7 B )

Set y = -log TT,.
The justification of this is based on the remarks below.
(a) To sample the density ye_y/P(Z) on its full range (0,~) (Ref. 4, C 22),

one generates random numbers T,T, and sets

y = -log Ty,

where (rl,rz) may be thought of as a point uniformly distributed in the unit

square.
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10

TABLE III

DATA FOR CASE n

C B h €, Al
3.97699 2.56919 2.539 .89 .646
5.77073 4.19987 2.834 .89 .728
7.83797 6.11994 2.967 .85 .781

10.1443 8.29047 3.157 .84 .817
12.6646 10.6854 .336 .83 .844
15.3805 13.2830 .488 .81 .864
18.2776  16.0682 .656 .81 .879
21.3445  19.0287 .809 .80 .892
24.5718  22.1544 .956 .80 .902
27.9518  25.4368 .072 .79 .910
31.4775  28.8685 .225 .79 .917
35.1430  32.4434 .315 .78 .923
38.4430  36.1558 .440 .77 .928
42.8730  40.0008 .557 .77 .933
46.9286  43.9739 .676 .77 .937
51.1061 48.0711 .792 .77 .941
55.4019 52.2887 .887 .76 .944
59.8128 56.6233 .012 .76 .947
64.1561 61.0719 121 .72 .952
68.7928 65.6317 .196 .71 .954
73.5361  70.2998 .316 .72 .956
78.3837  75.0740 .401 .72 .958
83.3333  79.9518 .500 .72 .959
88.3830 84.9311 .599 .72 .961

n

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

> 5/2
C h , N
93.5307 90.0099 5.691 .72 .962
98.7747 95.1863 5.786 .72 .964
104.113  100.458 .851 .71 .965
109.545  105.825 .941 .71 .966
115.067 111.283 .027 .71 967
120.680 116.833 .115 .71 .968
126.380 122.471 .212 .71 .969
132.168  128.198 .274 .71 .970
138.042  134.012 .356 .71 .971
144.000 139.911 .438 .71 .972
150.041  145.894 .519 .71 .972
156.165  151.960 .598 .71 .973
162.370  158.108 .678 .71 .974
168.655  164.337 .757 .71 .974
175.019. 170.646 .836 .71 .975
181.461  177.033 .910 .71 .976
187.980 183.498 .988 .71 .976
194.575  190.040 .049 .71 .977
201.246  196.658 .124 .71 .977
207.991  203.352 .195 .71 .978
214.811  210.119 .269 .71 .978
221.703  216.960 342,71 ,979
228.667 223.874 .415 .71 .979
235.702  230.860 .483 .71 .979



(b) But for the tail end density, one requires only such points for which
y >n, i.e., for which

r.r,<e =P

172

One could, of course, throw points (rl,rz) uniformly in the unit square, and
reject those lying above the hyperbola rir, = P, but the efficiency would be
poor.

(¢) The above (nonrejection) device is valid since the two transformations
in (4) and (5) both have Jacobian e—n(l + n), independent of Py5P,5 and so
transform the two rectangular areas of the full pl,p2 unit square determined by
the line Py = B in a uniform way into the required two areas of the 1,7, unit

n n

square; the first a rectangle of base e¢ ' and height 1, of area e ', and the
n

second lying directly below the hyperbola r T, = e, with base 1 - e ", and
area n e .
V. VALUE OF I(n) FORn <0

For arbitrary n > 0, and A = el < 1, one may write

© n-1 o n-1 -y
J(n)Ef Y__dz_=f " lae™) gy

AL 1+ (Ae™)
=Z (-1)j+1f y" ey gy
j=1 0
=) _ j+]_ J o _ 4
- Z (_Qn_@_! Gy)™ L e73Y 4iy)
j=1 JJ
oo . j ® —
=<Z (-1)J+1 A—n) f e dax = T(a,n) T'(n)
j=1 3 0

For n = 3/2, this gives in our case

1) = TA,3/2) T(3/2) = LT, 3/2),

determining n implicitly in terms of I(n).

In particular, this shows that

11



j+1
I(0) = /m Z i1 G 1%/2 = 521 (1 -7-%) z(3/2) = .678094,

where ¢ is the Riemann zeta-function (cf. TABLE I).
In fact, a method (Ref. 4, R 8) for sampling p(y) can be based on the above
relations when n < 0, but the routine of Part III seems simpler and does not

restrict n to negative values.

VI. THE MARGINAL DENSiTY OF Vx
It is remarkable that, by infroducihg polar coordinates r,0 for Vy’vz’ the
marginal density of vx on {-»,®) may be obtained in the explicit form (Ref. 1,

p. 334)

00 (o]

f f P(v,s¥,,v,) dvy dv,

=00

2 . mv2
4Tt m~ O . X
T3 0|l T e\ - g5
nh :

Plcvx)

For u = (m/26) Vs we then have the u-density
-1 ' -u2
d(u) = (2€)"" log(l + ee™™ ) ,

which seems a more well-behaved function than p(x), and would, of course, serve
our purpose. However, none of our attempts to sample d(u) have proved feasible.
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